Publications by Year: 2016

2016
Thiazolidinedione-8 Alters Symbiotic Relationship in C. albicans-S. mutans Dual Species Biofilm
Feldman M, Ginsburg I, Al-Quntar1 A, Steinberg D. Thiazolidinedione-8 Alters Symbiotic Relationship in C. albicans-S. mutans Dual Species Biofilm. Frontiers in Microbiology [Internet]. 2016;10. Publisher's VersionAbstract

The small molecule, thiazolidinedione-8 (S-8) was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS) production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (QS) (comDE and luxS), EPS production (gtfBCD and gbpB), as well as genes related to protection against oxidative stress (nox and sodA) were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1), adhesion (als3), hydrophobicity (csh1), and oxidative stress response (sod1, sod2, and cat1) were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm.

fmicb-07-00140.pdf
Nuclear histones: major virulence factors or just additional early sepsis markers? A comment
Ginsburg I, Koren E, Varani J, Kohen R. Nuclear histones: major virulence factors or just additional early sepsis markers? A comment. Inflammopharmacology [Internet]. 2016;24 (5) :287-289. Publisher's VersionAbstract

In 2009, Xu et al. and Chaput et al. in Nature Medicine had argued that the main cause of death in sepsis is the release from neutrophil nets of nuclear histone, highly toxic to endothelial cells and that these polycations are major and unique virulence factors. Since 2009, numerous researchers have also suggested the involvement of histones in the pathophysiology of many clinical disorders. If histones are indeed major unique virulence toxic agents, then heparin, activated protein C and antibodies to histone should prove excellent antisepsis agents. However, this is provided that these agents are administered to patients early enough before the activation of the cytokine storms, immune responses and the coagulation cascades are irreversibly unleashed. This may not be practical, since a diagnosis of sepsis is usually made much later. Future identifications of novel early markers are therefore needed and a compilation of cocktails of antagonists may replace the faulty single antagonists tried for many years, but in vain, to prevent death in sepsis.

nuclear_histones.pdf