Hoffman, R. E. ; Shenhar, R. ; Willner, I. ; Bronstein, H. E. ; Scott, L. T. ; Rajca, A. ; Rabinovitz, M. Heteronuclear editing method for detecting NOE between chemically equivalent protons: application to polycyclic aromatic hydrocarbons.
Magnetic Resonance in Chemistry 2000,
38, 311-314.
AbstractThe complete characterization of polycyclic aromatic hydrocarbons (PAHs) and tetrasubstituted ethylenes is critical to an understanding of their reactivity, for which NMR is an important tool. Chemical shifts can provide a direct measure of charge distribution and aromaticity. Unfortunately, COSY, NOESY and heteronuclear correlation cannot provide a complete assignment of the NMR spectra for some carbon-rich PAHs with symmetrical bay regions. The protons in the bay regions would yield NOE signals if they were not symmetrical. Natural substitution of C-12 with C-13 can be used to break the symmetry and yield these useful NOE signals. Using gradient-assisted editing, unequivocal assignments have been achieved for some previously problematic molecules. Copyright (C) 2000 John Wiley & Sons, Ltd.
Shenhar, R. ; Willner, I. ; Preda, D. V. ; Scott, L. T. ; Rabinovitz, M. Electron photoejection from corannulene dianion and Li+-mediated recombination of the photogenerated species.
Journal of Physical Chemistry A 2000,
104, 10631-10636.
AbstractThe antiaromatic corannulene dianion, Cor2-, undergoes photoejection of an electron to yield an intimate cage complex of Cor.- and the electron. Part of the complex species undergoes cage recombination, k(rec)(1) = 1.1 x 10(6) s(-1), while the other part of complex separates, k(s) = 2.3 x 10(6) s(-1), and yields Cor(.-) and a Li+/e(-) ion pair. Diffusional recombination of the later products proceeds with a bimolecular rate constant corresponding to k(rec)(2) = 1.3 x 10(9) M-1 s(-1). Time-resolved laser flash-photolysis and FT-EPR experiments are used to characterize the transient species.
Eshdat, L. ; Ayalon, A. ; Beust, R. ; Shenhar, R. ; Rabinovitz, M. Up to six units of charge and twist-boat benzene moieties: Alkali metal reduction of phenyl-perisubstituted benzenes.
Journal of the American Chemical Society 2000,
122, 12637-12645.
AbstractPhenyl-perisubstituted benzenes, tetraphenylbenzene (1) and hexaphenylbenzene (2), were reduced by lithium and sodium metal in THF-d(8) under high vacuum. The reduction process and the nature of the reduction products were studied by NMR. Tetraphenylbenzene was reduced by both metals to yield the corresponding dianionic salt. It was found that the addition of extra charge into the system, restricted the free rotation of the four phenyl substituents about the sigma bond connecting them to the central ring (G(181)(double dagger) = 7.8 +/- 0.2 kcal mol(-1)). The reaction of the alkali metals with 2 yielded four diamagnetic species: the first three were assigned to the dianion, tetraanion, and the surprising hexaanion of 2. These species were calculated using density functional theory (DFT) and were found to have central benzene rings with an unusual twist-boat geometry. Computational and experimental evidences show that each phenyl ring and its attached carbon of the central ring behave like a benzyl anion. We therefore view the hexaanion of 2 as a cyclohexa(benzylanion). The fourth diamagnetic species was a product of a double-sided cyclization, which yielded the dianion of dihydro-9, 18-diphenylphenanthro[9,10-b]triphenylene (9,18-diphenyltetrabenz[a,c,h,j] anthracene dianion, 3(2-)). Reaction of the dianion with oxygen gave 3 in improved yields compared to literature preparations.