Citation:
Abstract:
Fetal and postnatal bone development in humans is traditionally viewed as a process characterized by progressively increasing mineral density. Yet, a temporary decrease in mineral density has been described in the long bones of infants in the immediate postnatal period. The mechanism that underlies this phenomenon, as well as its causes and consequences, remain unclear. Using daily mu CT scans of murine femora and tibiae during perinatal development, we show that a temporary decrease in tissue mineral density (TMD) is evident in mice. By monitoring spatial and temporal structural changes during normal growth and in a mouse strain in which osteoclasts are non-functional (Src-null), we show that endosteal bone resorption is the main cause for the perinatal decrease in TMD. Mechanical testing revealed that this temporary decrease is correlated with reduced stiffness of the bones. We also show, by administration of a progestational agent to pregnant mice, that the decrease in TMD is not the result of parturition itself. This study provides a comprehensive View of perinatal long bone development in mice, and describes the process as well as the consequences of density fluctuation during this period. (C) 2012 Elsevier Inc. All rights reserved.