From dots to doughnuts: Two-dimensionally confined deposition of polyelectrolytes on block copolymer templates

Citation:

Oded, M. ; Kelly, S. T. ; Gilles, M. K. ; Müller, A. H. E. ; Shenhar, R. From dots to doughnuts: Two-dimensionally confined deposition of polyelectrolytes on block copolymer templates. Polymer 2016, 107, 406-414.

Date Published:

DEC 19

Abstract:

The combination of block copolymer templating with electrostatic self-assembly provides a simple and robust method for creating nano-patterned polyelectrolyte multilayers over large areas. The deposition of the first polyelectrolyte layer provides important insights on the initial stages of multilayer buildup. Here, we focus on two-dimensionally confined ``dots'' patterns afforded by block copolymer films featuring hexagonally-packed cylinders that are oriented normal to the substrate. Rendering the cylinder caps positively charged enables the selective deposition of negatively charged polyelectrolytes on them under salt-free conditions. The initially formed polyelectrolyte nanostructures adopt a toroidal (''doughnut'') shape, which results from retraction of dangling polyelectrolyte segments into the ``dots'' upon drying. With increasing exposure time to the polyelectrolyte solution, the final shape of the deposited polyelectrolyte transitions from a doughnut to a hemisphere. These insights would enable the creation of patterned polyelectrolyte multilayers with increased control over adsorption selectivity of the additional incoming polyelectrolytes. (C) 2016 Elsevier Ltd. All rights reserved.

Notes:

48. from dots to doughnuts

Last updated on 02/08/2019