Block copolyme-mediated assembly

2008
Kletenik-Edelman, O. ; Ploshnik, E. ; Salant, A. ; Shenhar, R. ; Banin, U. ; Rabani, E. Drying-mediated hierarchical self-assembly of nanoparticles: A dynamical coarse-grained approach. Journal of Physical Chemistry C 2008, 112, 4498-4506.Abstract

A coarse-grained lattice gas model is developed to study the drying-mediated self-assembly of nanoparticles on diblock copolymer substrates. The model describes the nanoparticles, the solvent and the diblock copolymer on length scales that are typical to the solvent bulk correlation length. Monte Carlo simulation techniques are used to delineate the various mechanisms of this out-of-equilibrium hierarchical self-assembly. Several different assembly scenarios corresponding to different selectivity of the nanoparticles/liquid/substrate are discussed. The role of surface tension, evaporation rate, diffusion rate, nanoparticle, coverage, and diblock copolymer periodicity is explored. Optimal conditions to form a stripe phase of nanoparticles along with predictions of novel 3D structures resulting from high nanoparticle and solvent selectivity are described.

16. Rabani JPCC 2008

2005
Shenhar, R. ; Jeoung, E. ; Srivastava, S. ; Norsten, T. B. ; Rotello, V. M. Crosslinked nanoparticle stripes and hexagonal networks obtained via selective patterning of block copolymer thin films. Advanced Materials 2005, 17, 2206-2210.Abstract

Robust arrays of ordered nanoparticles (see Figure and cover) have been created by combining two self‐assembly strategies: microphase separation of block copolymers and coordination chemistry. Thin films of a microphase‐separated block copolymer serve as templates for patterning of terpyridine‐functionalized gold nanoparticles. Subsequent treatment with iron salts crosslinks the patterned nanoparticles via the formation of iron–terpyridine complexes.

14. Advanced Materials 2005   Advanced Materials 2005

Shenhar, R. ; Norsten, T. B. ; Rotello, V. M. Polymer-mediated nanoparticle assembly: Structural control and applications. Advanced Materials 2005, 17, 657-669.Abstract

Nanoparticle-polymer composites are diverse and versatile functional materials, with applications ranging from electronic device fabrication to catalysis. This review focuses on the use of chemical design to control the structural attributes of polymer-mediated assembly of nanoparticles. We will illustrate the use of designed particles and polymers to create nanocomposites featuring interesting and pragmatic structures and properties. We will also describe applications of these engineered materials.

16. Polymer-mediated nanoparticle assembly

Pages