Sukenik, Shahar, Daniel Harries, and Assaf Friedler. “
Biophysical Chemistry.” In
Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Waltham, MA: Elsevier, 2019.
Publisher's VersionAbstractBiophysical chemistry is a branch of the multidisciplinary study of biophysics. The field is devoted to a quantitative analysis of biological systems using experimental, theoretical, and computational tools. In contrast to a physics-centered approach for biophysics that deals with forces and scaling laws, or a biology-centered view that deals with the phenotype of the studied system, biophysical chemistry focuses on the molecular level. Unlike biochemistry, which often focuses on chemical reactions driving biological systems, biophysical chemistry is aimed at the collection and analysis of quantitative data to provide predictive physical models describing biological phenomena occurring at the molecular level. Biophysical chemistry aims to bridge the physical and biological disciplines: in biological systems physical forces and interactions are mediated through molecules, which ultimately
determine phenotype. The experimental and theoretical tools of biophysical chemistry have demonstrated significant success in unraveling multiple basic molecular mechanisms that govern biological processes. Here we highlight some of the important contemporary areas and questions currently studied in the field of biophysical chemistry. Since molecules are at the center of this study, we focus our discussion on three classes of molecules essential for all living organisms: proteins, nucleic acids, and lipids.
Shumilin, Ilan, Christoph Allolio, and Daniel Harries. “
How Sugars Modify Caffeine Self-Association and Solubility: Resolving a Mechanism of Selective Hydrotropy.”
Journal of the American Chemical Society 141, no. 45 (2019): 18056-18063.
Publisher's VersionAbstractThe aggregation of drugs and nutraceuticals in aqueous media is an outstanding problem for their efficacy and bioavailability. A common solution is to add excipients or hydrotropes that increase solubility and limit aggregation. Here we study caffeine, a widely consumed drug that undergoes oligomerization and aggregation in aqueous solutions. Combining partition and solubility experiments with molecular dynamics simulations, we determined the effect of sugars (mono- and disaccharides) on caffeine self-association and solubility. We find that sugars selectively increase the concentration of caffeine in its monomeric state, but decrease its solubility in all oligomeric forms. Thus we determine that, in contrast to common hydrotropes, sugars act as selective hydrotropes toward caffeine, since they differentially act on specific solvated forms of the drug. We furthermore unravel the molecular mechanism for this selectivity, and comment on the general design principles that should help develop targeted excipients for bioavailability and taste modification in drugs and foods.