Effects of Electromagnetic Coupling on Conductance Switching of a Gated Tunnel Junction

Citation:

Baratz, A. ; White, A. J. ; Galperin, M. ; Baer, R. Effects of Electromagnetic Coupling on Conductance Switching of a Gated Tunnel Junction. The Journal of Physical Chemistry Letters 2014, 5 3545–3550.
baratz2014.pdf385 KB

Abstract:

Using a combination of density functional theory and quantum master equations approach, we study the effect of electromagnetic (EM) coupling on the nonequilibrium steady-state behavior of a recently introduced gated molecular junction. This junction was demonstrated in a previous publication to exhibit sharp current switching near a certain critical DC field Ez*, which induces intramolecular charge transfer, and here, we analyze the steady-state population and current when an AC EM field (EMF) is present. The AC EMF at frequency $ømega_0$ produces pronounced population and current features at gate fields Ez = Ez* ± $\hbar ømega_0/ez$ (where $e_z$ is the dipole of the charge-transfer state) and thus allows additional sharp switching capability at lower gate fields. We found that even when EMF is absent, the EM coupling itself changes the overall steady-state population and current distributions because it allows for relaxation via spontaneous emission

Notes:

RBaer-Publication

Last updated on 09/12/2018