Quasiparticle excitations

In Press
Convergence Analysis of the Stochastic Resolution of Identity: Comparing Hutchinson to Hutch++ for the Second-Order Green's Function
Mejía, L. ; Sharma, S. ; Baer, R. ; Chan, G. K. - L. ; Rabani, E. Convergence Analysis of the Stochastic Resolution of Identity: Comparing Hutchinson to Hutch++ for the Second-Order Green's Function. Journal of Chemical Physics In Press. Publisher's VersionAbstract

Stochastic orbital techniques offer reduced computational scaling and memory requirements to describe ground and excited states at the cost of introducing controlled statistical errors. Such techniques often rely on two basic operations, stochastic trace estimation and stochastic resolution of identity, both of which lead to statistical errors that scale with the number of stochastic realizations (\$N\_\\textbackslashxi\\$) as \$\textbackslashsqrt\N\_\\textbackslashxi\ˆ\-1\\\$. Reducing the statistical errors without significantly increasing \$N\_\\textbackslashxi\\$ has been challenging and is central to the development of efficient and accurate stochastic algorithms. In this work, we build upon recent progress made to improve stochastic trace estimation based on the ubiquitous Hutchinson's algorithm and propose a two-step approach for the stochastic resolution of identity, in the spirit of the Hutch++ method. Our approach is based on employing a randomized low-rank approximation followed by a residual calculation, resulting in statistical errors that scale much better than \$\textbackslashsqrt\N\_\\textbackslashxi\ˆ\-1\\\$. We implement the approach within the second-order Born approximation for the self-energy in the computation of neutral excitations and discuss three different low-rank approximations for the two-body Coulomb integrals. Tests on a series of hydrogen dimer chains with varying lengths demonstrate that the Hutch++-like approximations are computationally more efficient than both deterministic and purely stochastic (Hutchinson) approaches for low error thresholds and intermediate system sizes. Notably, for arbitrarily large systems, the Hutchinson-like approximation outperforms both deterministic and Hutch++-like methods.

2022
Stochastic Vector Techniques in Ground-State Electronic Structure
Baer, R. ; Neuhauser, D. ; Rabani, E. Stochastic Vector Techniques in Ground-State Electronic Structure. Annu. Rev. Phys. Chem. 2022, 73, annurev–physchem–090519–045916. Publisher's VersionAbstract

We review a suite of stochastic vector computational approaches for studying the electronic structure of extended condensed matter systems. These techniques help reduce algorithmic complexity, facilitate efficient parallelization, simplify computational tasks, accelerate calculations, and diminish memory requirements. While their scope is vast, we limit our study to ground-state and finite temperature density functional theory (DFT) and second-order perturbation theory. More advanced topics, such as quasiparticle (charge) and optical (neutral) excitations and higher-order processes, are covered elsewhere. We start by explaining how to use stochastic vectors in computations, characterizing the associated statistical errors. Next, we show how to estimate the electron density in DFT and discuss highly effective techniques to reduce statistical errors. Finally, we review the use of stochastic vector techniques for calculating correlation energies within the secondorder Møller-Plesset perturbation theory and its finite temperature variational form. Example calculation results are presented and used to demonstrate the efficacy of the methods.

2020
Dopant levels in large nanocrystals using stochastic optimally tuned range-separated hybrid density functional theory
Lee, A. J. ; Chen, M. ; Li, W. ; Neuhauser, D. ; Baer, R. ; Rabani, E. Dopant levels in large nanocrystals using stochastic optimally tuned range-separated hybrid density functional theory. Physical Review B 2020, 102, 035112. Publisher's Version lee2020dopant.pdf
2018
Simple eigenvalue-self-consistent ΔGW0
Vlček, V. ; Baer, R. ; Rabani, E. ; Neuhauser, D. Simple eigenvalue-self-consistent ΔGW0. J. Chem. Phys. 2018, 149, 174107. Publisher's Version vlcek2018simple.pdf
Vlček, V. ; Li, W. ; Baer, R. ; Rabani, E. ; Neuhauser, D. Swift G W beyond 10,000 electrons using sparse stochastic compression. Phys. Rev. B 2018, 98, 075107. Publisher's Version vlcek_et_al._-_2018_-_swift_g_w_beyond_10000_electrons_using_sparse_sto.pdf