Quantum Chemistry

Submitted
Linear scalability of density functional theory calculations without imposing electron localization
Fabian, M. D. ; Shpiro, B. ; Baer, R. Linear scalability of density functional theory calculations without imposing electron localization. arXiv:2108.13478 [physics] Submitted. Publisher's VersionAbstract

Linear scaling density functional theory approaches to electronic structure are often based on the tendency of electrons to localize even in large atomic and molecular systems. However, in many cases of actual interest, for example in semiconductor nanocrystals, system sizes can reach very large extension before significant electron localization sets in and the scaling of the numerical methods may deviate strongly from linear. Here, we address this class of systems, by developing a massively parallel density functional theory (DFT) approach which doesn't rely on electron localizationa and is formally quadratic scaling, yet enables highly efficient linear wall-time complexity in the weak scalability regime. The approach extends from the stochastic DFT method described in Fabian et. al. WIRES: Comp. Mol. Science, e1412 2019 but is fully deterministic. It uses standard quantum chemical atom-centered Gaussian basis sets for representing the electronic wave functions combined with Cartesian real space grids for some of the operators and for enabling a fast solver for the Poisson equation. Our main conclusion is, that when a processor-abundant high performance computing (HPC) infrastructure is available, this type of approach has the potential to allow the study of large systems in regimes where quantum confinement or electron delocalization prevents linear-scaling.

qpjsuppl.pdf
Tempering stochastic density functional theory
Nguyen, M. ; Li, W. ; Li, Y. ; Baer, R. ; Rabani, E. ; Neuhauser, D. Tempering stochastic density functional theory. arXiv:2107.06218 [physics] Submitted. Publisher's VersionAbstract

We introduce a tempering approach with stochastic density functional theory (sDFT), labeled t-sDFT, which reduces the statistical errors in the estimates of observable expectation values. This is achieved by rewriting the electronic density as a sum of a "warm" component complemented by "colder" correction(s). Since the "warm" component is larger in magnitude but faster to evaluate, we use many more stochastic orbitals for its evaluation than for the smaller-sized colder correction(s). This results in a significant reduction of the statistical fluctuations and the bias compared to sDFT for the same computational effort. We the method's performance on large hydrogen-passivated silicon nanocrystals (NCs), finding a reduction in the systematic error in the energy by more than an order of magnitude, while the systematic errors in the forces are also quenched. Similarly, the statistical fluctuations are reduced by factors of around 4-5 for the total energy and around 1.5-2 for the forces on the atoms. Since the embedding in t-sDFT is fully stochastic, it is possible to combine t-sDFT with other variants of sDFT such as energy-window sDFT and embedded-fragmented sDFT.

nguyen2021tempering.pdf
The high frequency limit of spectroscopy
Nazarov, V. U. ; Baer, R. The high frequency limit of spectroscopy. arXiv:2101.09467 [cond-mat] Submitted. Publisher's VersionAbstract

We consider a quantum-mechanical system, finite or extended, initially in its ground-state, exposed to a time-dependent potential pulse, with a slowly varying envelope and a carrier frequency \$\textbackslashomega\_0\$. By working out a rigorous solution of the time-dependent Schr\textbackslash"odinger equation in the high-\$\textbackslashomega\_0\$ limit, we show that the linear response is completely suppressed after the switch-off of the pulse. We show, at the same time, that to the lowest order in \$\textbackslashomega\_0ˆ\-1\\$, observables are given in terms of the linear density response function \$\textbackslashchi(\textbackslashrv,\textbackslashrv',\textbackslashomega)\$, despite the problem's nonlinearity. We propose a new spectroscopic technique based on these findings, which we name the Nonlinear High-Frequency Pulsed Spectroscopy (NLHFPS). An analysis of the jellium slab and sphere models reveals very high surface sensitivity of NLHFPS, which produces a richer excitation spectrum than accessible within the linear-response regime. Combining the advantages of the extraordinary surface sensitivity, the absence of constraints by the conventional dipole selection rules, and the ease of theoretical interpretation by means of the linear response time-dependent density functional theory, NLHFPS has the potential to evolve into a powerful characterization method in nanoscience and nanotechnology.

2101.09467.pdf
2020
Time-resolving the ultrafast H2 roaming chemistry and H3+ formation using extreme-ultraviolet pulses
Livshits, E. ; Luzon, I. ; Gope, K. ; Baer, R. ; Strasser, D. Time-resolving the ultrafast H2 roaming chemistry and H3+ formation using extreme-ultraviolet pulses. Communications Chemistry 2020, 3 49. Publisher's Version livshits2020time.pdf
Dopant levels in large nanocrystals using stochastic optimally tuned range-separated hybrid density functional theory
Lee, A. J. ; Chen, M. ; Li, W. ; Neuhauser, D. ; Baer, R. ; Rabani, E. Dopant levels in large nanocrystals using stochastic optimally tuned range-separated hybrid density functional theory. Physical Review B 2020, 102, 035112. Publisher's Version lee2020dopant.pdf
Range-separated stochastic resolution of identity: Formulation and application to second-order Green’s function theory
Dou, W. ; Chen, M. ; Takeshita, T. Y. ; Baer, R. ; Neuhauser, D. ; Rabani, E. Range-separated stochastic resolution of identity: Formulation and application to second-order Green’s function theory. The Journal of Chemical Physics 2020, 153, 074113. Publisher's VersionAbstract

We develop a range-separated stochastic resolution of identity (RS-SRI) approach for the four-index electron repulsion integrals, where the larger terms (above a predefined threshold) are treated using a deterministic RI and the remaining terms are treated using a SRI. The approach is implemented within a second-order Green’s function formalism with an improved O(N3) scaling with the size of the basis set, N. Moreover, the RS approach greatly reduces the statistical error compared to the full stochastic version [T. Y. Takeshita et al., J. Chem. Phys. 151, 044114 (2019)], resulting in computational speedups of ground and excited state energies of nearly two orders of magnitude, as demonstrated for hydrogen dimer chains and water clusters.

dou2020range.pdf
2019
Energy window stochastic density functional theory
Chen, M. ; Baer, R. ; Neuhauser, D. ; Rabani, E. Energy window stochastic density functional theory. The Journal of Chemical Physics 2019, 151, 114116. Publisher's Version chen2019energy.pdf
Stochastic Resolution of Identity for Real-Time Second-Order Green’s Function: Ionization Potential and Quasi-Particle Spectrum
Dou, W. ; Takeshita, T. Y. ; Chen, M. ; Baer, R. ; Neuhauser, D. ; Rabani, E. Stochastic Resolution of Identity for Real-Time Second-Order Green’s Function: Ionization Potential and Quasi-Particle Spectrum. Journal of Chemical Theory and Computation 2019. Publisher's VersionAbstract

We develop a stochastic resolution of identity approach to the real-time second-order Green’s function (real-time sRI-GF2) theory, extending our recent work for imaginary-time Matsubara Green’s function [Takeshita et al. J. Chem. Phys. 2019, 151, 044114]. The approach provides a framework to obtain the quasi-particle spectra across a wide range of frequencies and predicts ionization potentials and electron affinities. To assess the accuracy of the real-time sRI-GF2, we study a series of molecules and compare our results to experiments as well as to a many-body perturbation approach based on the GW approximation, where we find that the real-time sRI-GF2 is as accurate as self-consistent GW. The stochastic formulation reduces the formal computatinal scaling from O(Ne5) down to O(Ne3) where Ne is the number of electrons. This is illustrated for a chain of hydrogen dimers, where we observe a slightly lower than cubic scaling for systems containing up to Ne ≈ 1000 electrons.

dou2019stochastic.pdf
Transition to metallization in warm dense helium-hydrogen mixtures using stochastic density functional theory within the Kubo-Greenwood formalism
Cytter, Y. ; Rabani, E. ; Neuhauser, D. ; Preising, M. ; Redmer, R. ; Baer, R. Transition to metallization in warm dense helium-hydrogen mixtures using stochastic density functional theory within the Kubo-Greenwood formalism. Physical Review B 2019, 100. Publisher's VersionAbstract

Abstract The Kubo-Greenwood (KG) formula is often used in conjunction with Kohn-Sham (KS) density functional theory (DFT) to compute the optical conductivity, particularly for warm dense mater. For applying the KG formula, all KS eigenstates and eigenvalues up to an energy cutoff are required and thus the approach becomes expensive, especially for high temperatures and large systems, scaling cubically with both system size and temperature. Here, we develop an approach to calculate the KS conductivity within the stochastic DFT (sDFT) framework, which requires knowledge only of the KS Hamiltonian but not its eigenstates and values. We show that the computational effort associated with the method scales linearly with system size and reduces in proportion to the temperature unlike the cubic increase with traditional deterministic approaches. In addition, we find that the method allows an accurate description of the entire spectrum, including the high-frequency range, unlike the deterministic method which is compelled to introduce a high-frequency cut-off due to memory and computational time constraints. We apply the method to helium-hydrogen mixtures in the warm dense matter regime at temperatures of \textbackslashsim60\textbackslashtext\kK\ and find that the system displays two conductivity phases, where a transition from non-metal to metal occurs when hydrogen atoms constitute \textbackslashsim0.3 of the total atoms in the system.

cytter2019transition.pdf
Quantum Monte Carlo assessment of density functionals for π-electron molecules: ethylene and bifuran
Ospadov, E. ; Rothstein, S. M. ; Baer, R. Quantum Monte Carlo assessment of density functionals for π-electron molecules: ethylene and bifuran. 2019, 117, 2241–2250. Publisher's VersionAbstract

We perform all-electron, pure-sampling quantum Monte Carlo (QMC) calculations on ethylene and bifuran molecules. The orbitals used for importance sampling with a single Slater determinant are generated from Hartree-Fock and density functional theory (DFT). Their fixed-node energy provides an upper bound to the exact energy. The best performing density functionals for ethylene are BP86 and M06, which account for 99% of the electron correlation energy. Sampling from the π-electron distribution with these orbitals yields a quadrupole moment comparable to coupled cluster CCSD(T) calculations. However, these, and all other density functionals, fail to agree with CCSD(T) while sampling from electron density in the plane of the molecule. For bifuran, as well as ethylene, a correlation is seen between the fixed-node energy and deviance of the QMC quadrupole moment estimates from those calculated by DFT. This suggests that proximity of DFT and QMC densities correlates with the quality of the exchange nodes of the DFT wave function for both systems.

ospadov2019quantum.pdf
Making Sense of Coulomb Explosion Imaging
Luzon, I. ; Livshits, E. ; Gope, K. ; Baer, R. ; Strasser, D. Making Sense of Coulomb Explosion Imaging. J. Phys. Chem. Lett. 2019, 10, 1361–1367. Publisher's VersionAbstract

A multifaceted agreement between ab initio theoretical predictions and experimental measurements, including branching ratios, channel-specific kinetic energy release, and three-body momentum correlation spectra, leads to the identification of new mechanisms in Coulomb-explosion (CE) induced two- and three-body breakup processes in methanol. These identified mechanisms include direct nonadiabatic Coulomb explosion responsible for CO bond-breaking, a long-range “ inverse harpooning” dominating the production of H2+ + HCOH+, a transient proton migration leading to surprising energy partitioning in three-body fragmentation and other complex dynamics forming products such as H2O+ and H3+. These mechanisms provide general concepts that should be useful for analyzing future time-resolved Coulomb explosion imaging of methanol as well as other molecular systems. These advances are enabled by a combination of recently developed experimental and computational techniques, using weak ultrafast EUV pulses to initiate the CE and a high-level quantum chemistry approach to follow the resulting field-free nonadiabatic molecular dynamics.

luzon2019making.pdf
2017
Vlček, V. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Stochastic GW calculations for molecules. J. Chem. Theory Comput. 2017, 13, 4997–5003.Abstract

Quasiparticle (QP) excitations are extremely important for understanding and predicting charge transfer and transport in molecules, nanostructures and extended systems. Since density functional theory (DFT) within Kohn-Sham (KS) formulation does not provide reliable QP energies, a many-body perturbation technique within the GW approximation are essential. The steep computational scaling of GW prohibits its use in extended, open boundary, systems with thousands of electrons and more. Recently, a stochastic formulation of GW has been proposed [Phys. Rev. Lett. 113, 076402 (2014)] which scales nearly linearly with the system size, as illustrated for a series of silicon nanocrystals exceeding 3000 electrons. Here, we implement the stochastic GW (sGW) approach to study the ionization potential (IP) of a subset of molecules taken from the "GW 100" benchmark. We show that sGW provides a reliable results in comparison to GW WEST code and to experimental results, numerically establishing its validity. For completeness, we also provide a detailed review of sGW and a summary of the numerical algorithm.

vlcek2017stoch.pdf
Neuhauser, D. ; Baer, R. ; Zgid, D. Stochastic self-consistent second-order Green’s function method for correlation energies of large electronic systems. J. Chem. Theory Comput. 2017, 13, 5396−5403.Abstract

The second-order Matsubara Green’s function method (GF2) is a robust temperature dependent quantum chemistry approach, extending beyond the random-phase approximation. However, till now the scope of GF2 applications was quite limited as they require computer resources which rise steeply with system size. In each step of the self-consistent GF2 calculation there are two parts: the estimation of the self-energy from the previous step’s Green’s function, and updating the Green’s function from the self-energy. The first part formally scales as the fifth power of the system size while the second has a much gentler cubic scaling. Here, we develop a stochastic approach to GF2 (sGF2) which reduces the fifth power scaling of the first step to merely quadratic, leaving the overall sGF2 scaling as cubic. We apply the method to linear hydrogen chains containing up to 1000 electrons, showing that the approach is numerically stable, efficient and accurate. The stochastic errors are very small, of the order of 0.1% or less of the correlation energy for large systems, with only a moderate computational effort. The first iteration of GF2 is an MP2 calculation that is done in linear scaling, hence we obtain an extremely fast stochastic MP2 (sMP2) method as a by-product. While here we consider finite systems with large band gaps where at low temperatures effects are negligible, the sGF2 formalism is temperature dependent and general and can be applied to finite or periodic systems with small gaps at finite temperatures.

neuhauser2017.pdf
2016
Vlček, V. ; Eisenberg, H. R. ; Steinle-Neumann, G. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Spontaneous charge carrier localization in extended one-dimensional systems. Phys. Rev. Lett. 2016, 116, 186401.Abstract

Charge carrier localization in extended atomic systems has been described previously as being driven by disorder, point defects, or distortions of the ionic lattice. Here we show for the first time by means of first-principles computations that charge carriers can spontaneously localize due to a purely electronic effect in otherwise perfectly ordered structures. Optimally tuned range-separated density functional theory and many-body perturbation calculations within the GW approximation reveal that in trans-polyacetylene and polythiophene the hole density localizes on a length scale of several nanometers. This is due to exchange-induced translational symmetry breaking of the charge density. Ionization potentials, optical absorption peaks, excitonic binding energies, and the optimally tuned range parameter itself all become independent of polymer length as it exceeds the critical localization length. Moreover, we find that lattice disorder and the formation of a polaron result from the charge localization in contrast to the traditional view that lattice distortions precede charge localization. Our results can explain experimental findings that polarons in conjugated polymers form instantaneously after exposure to ultrafast light pulses.

vlcek2016.pdf
2015
Neuhauser, D. ; Rabani, E. ; Cytter, Y. ; Baer, R. Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory. J. Phys. Chem. A 2015, 120, 3071–3078.Abstract

We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn–Sham density matrix. The computational cost of the approach is similar to that of usual Kohn–Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe–Salpeter approach.

neuhauser2015.pdf
Rabani, E. ; Baer, R. ; Neuhauser, D. Time-dependent stochastic Bethe-Salpeter approach. Phys. Rev. B 2015, 91, 235302.Abstract

A time-dependent formulation for electron-hole excitations in extended finite systems, based on the Bethe-Salpeter equation (BSE), is developed using a stochastic wave function approach. The time-dependent formulation builds on the connection between time-dependent Hartree-Fock (TDHF) theory and the configuration-interaction with single substitution (CIS) method. This results in a time-dependent Schrödinger-like equation for the quasiparticle orbital dynamics based on an effective Hamiltonian containing direct Hartree and screened exchange terms, where screening is described within the random-phase approximation (RPA). To solve for the optical-absorption spectrum, we develop a stochastic formulation in which the quasiparticle orbitals are replaced by stochastic orbitals to evaluate the direct and exchange terms in the Hamiltonian as well as the RPA screening. This leads to an overall quadratic scaling, a significant improvement over the equivalent symplectic eigenvalue representation of the BSE. Application of the time-dependent stochastic BSE (TDsBSE) approach to silicon and CdSe nanocrystals up to size of  3000 electrons is presented and discussed.

rabani2015.pdf
Gao, Y. ; Neuhauser, D. ; Baer, R. ; Rabani, E. Sublinear scaling for time-dependent stochastic density functional theory. J. Chem. Phys. 2015, 142, 034106.Abstract

A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number ( 16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.

gao2015.pdf
2014
Neuhauser, D. ; Gao, Y. ; Arntsen, C. ; Karshenas, C. ; Rabani, E. ; Baer, R. Breaking the Theoretical Scaling Limit for Predicting Quasiparticle Energies: The Stochastic GW Approach. Phys. Rev. Lett. 2014, 113, 076402.Abstract

We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with Ne > 3000 electrons.

neuhauser2014.pdf
Baratz, A. ; White, A. J. ; Galperin, M. ; Baer, R. Effects of Electromagnetic Coupling on Conductance Switching of a Gated Tunnel Junction. The Journal of Physical Chemistry Letters 2014, 5 3545–3550.Abstract

Using a combination of density functional theory and quantum master equations approach, we study the effect of electromagnetic (EM) coupling on the nonequilibrium steady-state behavior of a recently introduced gated molecular junction. This junction was demonstrated in a previous publication to exhibit sharp current switching near a certain critical DC field Ez*, which induces intramolecular charge transfer, and here, we analyze the steady-state population and current when an AC EM field (EMF) is present. The AC EMF at frequency $ømega_0$ produces pronounced population and current features at gate fields Ez = Ez* ± $\hbar ømega_0/ez$ (where $e_z$ is the dipole of the charge-transfer state) and thus allows additional sharp switching capability at lower gate fields. We found that even when EMF is absent, the EM coupling itself changes the overall steady-state population and current distributions because it allows for relaxation via spontaneous emission

baratz2014.pdf
Egger, D. A. ; Weissman, S. ; Refaely-Abramson, S. ; Sharifzadeh, S. ; Dauth, M. ; Baer, R. ; Kümmel, S. ; Neaton, J. B. ; Zojer, E. ; Kronik, L. Outer-valence Electron Spectra of Prototypical Aromatic Heterocycles from an Optimally Tuned Range-Separated Hybrid Functional. J. Chem. Theory Comput. 2014, 10, 1934–1952.Abstract

Density functional theory with optimally tuned range-separated hybrid (OT-RSH) functionals has been recently suggested [Refaely-Abramson et al. Phys. Rev. Lett. 2012, 109, 226405] as a nonempirical approach to predict the outer-valence electronic structure of molecules with the same accuracy as many-body perturbation theory. Here, we provide a quantitative evaluation of the OT-RSH approach by examining its performance in predicting the outer-valence electron spectra of several prototypical gas-phase molecules, from aromatic rings (benzene, pyridine, and pyrimidine) to more complex organic systems (terpyrimidinethiol and copper phthalocyanine). For a range up to several electronvolts away from the frontier orbital energies, we find that the outer-valence electronic structure obtained from the OT-RSH method agrees very well (typically within  0.1–0.2 eV) with both experimental photoemission and theoretical many-body perturbation theory data in the GW approximation. In particular, we find that with new strategies for an optimal choice of the short-range fraction of Fock exchange, the OT-RSH approach offers a balanced description of localized and delocalized states. We discuss in detail the sole exception found—a high-symmetry orbital, particular to small aromatic rings, which is relatively deep inside the valence state manifold. Overall, the OT-RSH method is an accurate DFT-based method for outer-valence electronic structure prediction for such systems and is of essentially the same level of accuracy as contemporary GW approaches, at a reduced computational cost.

egger2014.pdf

Pages