Optimal 1st-principles tuning

Dopant levels in large nanocrystals using stochastic optimally tuned range-separated hybrid density functional theory
Lee, A. J. ; Chen, M. ; Li, W. ; Neuhauser, D. ; Baer, R. ; Rabani, E. Dopant levels in large nanocrystals using stochastic optimally tuned range-separated hybrid density functional theory. Physical Review B 2020, 102, 035112. Publisher's Version lee2020dopant.pdf
Range-separated stochastic resolution of identity: Formulation and application to second-order Green’s function theory
Dou, W. ; Chen, M. ; Takeshita, T. Y. ; Baer, R. ; Neuhauser, D. ; Rabani, E. Range-separated stochastic resolution of identity: Formulation and application to second-order Green’s function theory. The Journal of Chemical Physics 2020, 153, 074113. Publisher's VersionAbstract

We develop a range-separated stochastic resolution of identity (RS-SRI) approach for the four-index electron repulsion integrals, where the larger terms (above a predefined threshold) are treated using a deterministic RI and the remaining terms are treated using a SRI. The approach is implemented within a second-order Green’s function formalism with an improved O(N3) scaling with the size of the basis set, N. Moreover, the RS approach greatly reduces the statistical error compared to the full stochastic version [T. Y. Takeshita et al., J. Chem. Phys. 151, 044114 (2019)], resulting in computational speedups of ground and excited state energies of nearly two orders of magnitude, as demonstrated for hydrogen dimer chains and water clusters.

Nonmonotonic band gap evolution in bent phosphorene nanosheets
Vlček, V. ; Rabani, E. ; Baer, R. ; Neuhauser, D. Nonmonotonic band gap evolution in bent phosphorene nanosheets. Phys. Rev. Materials 2019, 3 064601. Publisher's VersionAbstract

Nonmonotonic bending-induced changes of fundamental band gaps and quasiparticle energies are observed for realistic nanoscale phosphorene nanosheets. Calculations using stochastic many-body perturbation theory show that even slight curvature causes significant changes in the electronic properties. For small bending radii (\textless4 nm) the band gap changes from direct to indirect. The response of phosphorene to deformation is strongly anisotropic (different for zigzag vs armchair bending) due to an interplay of exchange and correlation effects. Overall, our results show that fundamental band gaps of phosphorene sheets can be manipulated by as much as 0.7 eV depending on the bending direction.

Vlček, V. ; Eisenberg, H. R. ; Steinle-Neumann, G. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Spontaneous charge carrier localization in extended one-dimensional systems. Phys. Rev. Lett. 2016, 116, 186401.Abstract

Charge carrier localization in extended atomic systems has been described previously as being driven by disorder, point defects, or distortions of the ionic lattice. Here we show for the first time by means of first-principles computations that charge carriers can spontaneously localize due to a purely electronic effect in otherwise perfectly ordered structures. Optimally tuned range-separated density functional theory and many-body perturbation calculations within the GW approximation reveal that in trans-polyacetylene and polythiophene the hole density localizes on a length scale of several nanometers. This is due to exchange-induced translational symmetry breaking of the charge density. Ionization potentials, optical absorption peaks, excitonic binding energies, and the optimally tuned range parameter itself all become independent of polymer length as it exceeds the critical localization length. Moreover, we find that lattice disorder and the formation of a polaron result from the charge localization in contrast to the traditional view that lattice distortions precede charge localization. Our results can explain experimental findings that polarons in conjugated polymers form instantaneously after exposure to ultrafast light pulses.

Vlček, V. ; Eisenberg, H. R. ; Steinle-Neumann, G. ; Kronik, L. ; Baer, R. Deviations from piecewise linearity in the solid-state limit with approximate density functionals. J. Chem. Phys. 2015, 142, 034107.Abstract

In exact density functional theory, the total ground-state energy is a series of linear segments between integer electron points, a condition known as “piecewise linearity.” Deviation from this condition is indicative of poor predictive capabilities for electronic structure, in particular of ionization energies, fundamental gaps, and charge transfer. In this article, we take a new look at the deviation from linearity (i.e., curvature) in the solid-state limit by considering two different ways of approaching it: a large finite system of increasing size and a crystal represented by an increasingly large reference cell with periodic boundary conditions. We show that the curvature approaches vanishing values in both limits, even for functionals which yield poor predictions of electronic structure, and therefore cannot be used as a diagnostic or constructive tool in solids. We find that the approach towards zero curvature is different in each of the two limits, owing to the presence of a compensating background charge in the periodic case. Based on these findings, we present a new criterion for functional construction and evaluation, derived from the size-dependence of the curvature, along with a practical method for evaluating this criterion. For large finite systems, we further show that the curvature is dominated by the self-interaction of the highest occupied eigenstate. These findings are illustrated by computational studies of various solids, semiconductor nanocrystals, and long alkane chains.

Petsalakis, I. D. ; Theodorakopoulos, G. ; Buchman, O. ; Baer, R. Applicability of Mulliken's formula for photoinduced and intramolecular charge-transfer energies. Chem. Phys. Lett. 2015, 625, 98–103.Abstract

The applicability of Mulliken’s theory for photoinduced as well as intramolecular charge-transfer states is examined for several systems of interest by comparing its predictions to TDDFT excitation energies, obtained using functionals appropriate for charge-transfer (CT) states. The results show that it is possible to estimate the energy of the CT state of a donor–acceptor pair on the basis of information on the separate donor and acceptor moieties, along with structural data, within 0.3 eV of TDDFT values. The novelty and usefulness of the proposed method lies mainly in PET applications where the TDDFT determination of the CT state is challenging.

Neuhauser, D. ; Rabani, E. ; Cytter, Y. ; Baer, R. Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory. J. Phys. Chem. A 2015, 120, 3071–3078.Abstract

We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn–Sham density matrix. The computational cost of the approach is similar to that of usual Kohn–Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe–Salpeter approach.

Baratz, A. ; White, A. J. ; Galperin, M. ; Baer, R. Effects of Electromagnetic Coupling on Conductance Switching of a Gated Tunnel Junction. The Journal of Physical Chemistry Letters 2014, 5 3545–3550.Abstract

Using a combination of density functional theory and quantum master equations approach, we study the effect of electromagnetic (EM) coupling on the nonequilibrium steady-state behavior of a recently introduced gated molecular junction. This junction was demonstrated in a previous publication to exhibit sharp current switching near a certain critical DC field Ez*, which induces intramolecular charge transfer, and here, we analyze the steady-state population and current when an AC EM field (EMF) is present. The AC EMF at frequency $ømega_0$ produces pronounced population and current features at gate fields Ez = Ez* ± $\hbar ømega_0/ez$ (where $e_z$ is the dipole of the charge-transfer state) and thus allows additional sharp switching capability at lower gate fields. We found that even when EMF is absent, the EM coupling itself changes the overall steady-state population and current distributions because it allows for relaxation via spontaneous emission

Egger, D. A. ; Weissman, S. ; Refaely-Abramson, S. ; Sharifzadeh, S. ; Dauth, M. ; Baer, R. ; Kümmel, S. ; Neaton, J. B. ; Zojer, E. ; Kronik, L. Outer-valence Electron Spectra of Prototypical Aromatic Heterocycles from an Optimally Tuned Range-Separated Hybrid Functional. J. Chem. Theory Comput. 2014, 10, 1934–1952.Abstract

Density functional theory with optimally tuned range-separated hybrid (OT-RSH) functionals has been recently suggested [Refaely-Abramson et al. Phys. Rev. Lett. 2012, 109, 226405] as a nonempirical approach to predict the outer-valence electronic structure of molecules with the same accuracy as many-body perturbation theory. Here, we provide a quantitative evaluation of the OT-RSH approach by examining its performance in predicting the outer-valence electron spectra of several prototypical gas-phase molecules, from aromatic rings (benzene, pyridine, and pyrimidine) to more complex organic systems (terpyrimidinethiol and copper phthalocyanine). For a range up to several electronvolts away from the frontier orbital energies, we find that the outer-valence electronic structure obtained from the OT-RSH method agrees very well (typically within  0.1–0.2 eV) with both experimental photoemission and theoretical many-body perturbation theory data in the GW approximation. In particular, we find that with new strategies for an optimal choice of the short-range fraction of Fock exchange, the OT-RSH approach offers a balanced description of localized and delocalized states. We discuss in detail the sole exception found—a high-symmetry orbital, particular to small aromatic rings, which is relatively deep inside the valence state manifold. Overall, the OT-RSH method is an accurate DFT-based method for outer-valence electronic structure prediction for such systems and is of essentially the same level of accuracy as contemporary GW approaches, at a reduced computational cost.

Refaely-Abramson, S. ; Sharifzadeh, S. ; Jain, M. ; Baer, R. ; Neaton, J. B. ; Kronik, L. Gap renormalization of molecular crystals from density-functional theory. Phys. Rev. B 2013, 88, 081204.Abstract

Fundamental gap renormalization due to electronic polarization is a basic phenomenon in molecular crystals. Despite its ubiquity and importance, all conventional approaches within density-functional theory completely fail to capture it, even qualitatively. Here, we present a new screened range-separated hybrid functional, which, through judicious introduction of the scalar dielectric constant, quantitatively captures polarization-induced gap renormalization, as demonstrated on the prototypical organic molecular crystals of benzene, pentacene, and C60. This functional is predictive, as it contains system-specific adjustable parameters that are determined from first principles, rather than from empirical considerations.

Baratz, A. ; Galperin, M. ; Baer, R. Gate-Induced Intramolecular Charge Transfer in a Tunnel Junction: A Nonequilibrium Analysis. J. Phys. Chem. C 2013, 117, 10257–10263.Abstract

A recently introduced molecular junction, for which the gate acts as an on/off switch for intrajunction electron transfer between localized donor and acceptor sites is studied. We demonstrate that a Landauer + density functional (DFT) approach is fundamentally flawed for describing the electronic conductance in this system. By comparing the Landauer + DFT conductance to that predicted by the Redfield quantum master equations, we point out several effects that cannot be explained by the former approach. The molecular junction is unique in the small number of conductance channels and their sharp response to the gate.

Baer, R. ; Rabani, E. Communication: Biexciton generation rates in CdSe nanorods are length independent. J. Chem. Phys. 2013, 138, 051102–4.Abstract

We study how shape affects multiexciton generation rates in a semiconducting nanocrystal by considering CdSe nanorods with varying diameters and aspect ratios. The calculations employ an atomistic semiempirical pseudopotential model combined with an efficacious stochastic approach applied to systems containing up to 20 000 atoms. The effect of nanorod diameter and aspect ratio on multiexciton generation rates is analyzed in terms of the scaling of the density of trion states and the scaling of the Coulomb couplings. Both show distinct scaling from spherical nanocrystals leading to a surprising result where the multiexciton generation rates are roughly independent of the nanorod length.

Stein, T. ; Autschbach, J. ; Govind, N. ; Kronik, L. ; Baer, R. Curvature and Frontier Orbital Energies in Density Functional Theory. J. Phys. Chem. Lett. 2012, 3 3740–3744.Abstract

Perdew et al. discovered two different properties of exact Kohn–Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points. (ii) Across an integer number of electrons, the exchange-correlation potential “jumps” by a constant, known as the derivative discontinuity (DD). Here we show analytically that in both the original and the generalized Kohn–Sham formulation of DFT the two properties are two sides of the same coin. The absence of a DD dictates deviation from piecewise linearity, but the latter, appearing as curvature, can be used to correct for the former, thereby restoring the physical meaning of orbital energies. A simple correction scheme for any semilocal and hybrid functional, even Hartree–Fock theory, is shown to be effective on a set of small molecules, suggesting a practical correction for the infamous DFT gap problem. We show that optimally tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and that this can be used as a sound theoretical basis for novel tuning strategies.

Salzner, U. ; Baer, R. Density functional theory orbital energies for predicting ionization energies. In AIP Conference Proceedings; AIP, 2012; Vol. 1504, pp. 1257–1260.Abstract

The range-separated Baer-Neuhauser-Livshits functional with optimized range-separation parameter \gamma was employed to predict ionization energies of alkanes and oligothiophenes. For all systems negative orbital energies of neutral species are consistent with explicitly calculated states of cations. For \sigma-systems excellent agreement with experiment is obtained while for conjugated π-systems IPs are underestimated.

Refaely-Abramson, S. ; Sharifzadeh, S. ; Govind, N. ; Autschbach, J. ; Neaton, J. B. ; Baer, R. ; Kronik, L. Quasiparticle Spectra from a Nonempirical Optimally Tuned Range-Separated Hybrid Density Functional. Phys. Rev. Lett. 2012, 109, 226405. Publisher's VersionAbstract

We present a method for obtaining outer-valence quasiparticle excitation energies from a density-functional-theory-based calculation, with an accuracy that is comparable to that of many-body perturbation theory within the GW approximation. The approach uses a range-separated hybrid density functional, with an asymptotically exact and short-range fractional Fock exchange. The functional contains two parameters, the range separation and the short-range Fock fraction. Both are determined nonempirically, per system, on the basis of the satisfaction of exact physical constraints for the ionization potential and frontier-orbital many-electron self-interaction, respectively. The accuracy of the method is demonstrated on four important benchmark organic molecules: perylene, pentacene, 3,4,9,10-perylene-tetracarboxylic-dianydride (PTCDA), and 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA). We envision that for the outer-valence excitation spectra of finite systems the approach could provide an inexpensive alternative to GW, opening the door to the study of presently out of reach large-scale systems.

Kronik, L. ; Stein, T. ; Refaely-Abramson, S. ; Baer, R. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. J. Chem. Theory Comput. 2012, 8 1515–1531.Abstract

Excitation gaps are of considerable significance in electronic structure theory. Two different gaps are of particular interest. The fundamental gap is defined by charged excitations, as the difference between the first ionization potential and the first electron affinity. The optical gap is defined by a neutral excitation, as the difference between the energies of the lowest dipole-allowed excited state and the ground state. Within many-body perturbation theory, the fundamental gap is the difference between the corresponding lowest quasi-hole and quasi-electron excitation energies, and the optical gap is addressed by including the interaction between a quasi-electron and a quasi-hole. A long-standing challenge has been the attainment of a similar description within density functional theory (DFT), with much debate on whether this is an achievable goal even in principle. Recently, we have constructed and applied a new approach to this problem. Anchored in the rigorous theoretical framework of the generalized Kohn–Sham equation, our method is based on a range-split hybrid functional that uses exact long-range exchange. Its main novel feature is that the range-splitting parameter is not a universal constant but rather is determined from first principles, per system, based on satisfaction of the ionization potential theorem. For finite-sized objects, this DFT approach mimics successfully, to the best of our knowledge for the first time, the quasi-particle picture of many-body theory. Specifically, it allows for the extraction of both the fundamental and the optical gap from one underlying functional, based on the HOMO–LUMO gap of a ground-state DFT calculation and the lowest excitation energy of a linear-response time-dependent DFT calculation, respectively. In particular, it produces the correct optical gap for the difficult case of charge-transfer and charge-transfer-like scenarios, where conventional functionals are known to fail. In this perspective, we overview the formal and practical challenges associated with gap calculations, explain our new approach and how it overcomes previous difficulties, and survey its application to a variety of systems.

Baratz, A. ; Baer, R. Nonmechanical Conductance Switching in a Molecular Tunnel Junction. J. Phys. Chem. Lett. 2012, 3 498–502.Abstract

We present a molecular junction composed of a donor (polyacetylene strands) and an acceptor (malononitrile) connected together via a benzene ring and coupled weakly to source and drain electrodes on each side, for which a gate electrode induces intramolecular charge transfer, switching reversibly the character of conductance. Using a new brand of density functional theory, for which orbital energies are similar to the quasiparticle energies, we show that the junction displays a single, gate-tunable differential conductance channel in a wide energy range. The gate field must align parallel to the displacement vector between donors and acceptor to affect their potential difference; for strong enough fields, spontaneous intramolecular electron transfer occurs. This event radically affects conductance, reversing the charge of carriers, enabling a spin-polarized current channel. We discuss the physical principles controlling the operation of the junction and find interplay of quantum interference, charging, Coulomb blockade, and electron-hole binding energy effects. We expect that this switching behavior is a generic property for similar donor-acceptor systems of sufficient stability.

Refaely-Abramson, S. ; Baer, R. ; Kronik, L. Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys. Rev. B 2011, 84, 075144.Abstract

The fundamental and optical gaps of relevant molecular systems are of primary importance for organic-based photovoltaics. Unfortunately, whereas optical gaps are accessible with time-dependent density functional theory (DFT), the highest-occupied - lowest-unoccupied eigenvalue gaps resulting from DFT calculations with semi-local or hybrid functionals routinely and severely underestimate the fundamental gaps of gas-phase organic molecules. Here, we show that a range-separated hybrid functional, optimally tuned so as to obey Koopmans' theorem, provides fundamental gaps that are very close to benchmark results obtained from many-body perturbation theory in the GW approximation. We then show that using this functional does not compromise the possibility of obtaining reliable optical gaps from time-dependent DFT. We therefore suggest optimally tuned range-separated hybrid functionals as a practical and accurate tool for DFT-based predictions of photovoltaically relevant and other molecular systems.

Kuritz, N. ; Stein, T. ; Baer, R. ; Kronik, L. Charge-transfer-like $π$\ to $π$* excitations in time-dependent density functional theory: A conundrum and its solution. J. Chem. Theory Comput. 2011, 7 2408–2415.Abstract

We address the conundrum posed by the well-known failure of time-dependent DFT (TDDFT) with conventional functionals for "charge-transfer-like" excitations in oligoacenes. We show that this failure is due to a small spatial overlap in orbitals obtained from the underlying single-electron orbitals by means of a unitary transformation. We further show that, as in true charge-transfer excitations, this necessarily results in failure of linear-response TDDFT with standard functionals. Range-separated hybrid functionals have been previously shown to mitigate such errors but at the cost of an empirically adjusted range-separation parameter. Here, we explain why this approach should succeed where conventional functionals fail. Furthermore, we show that optimal tuning of a range-separated hybrid functional, so as to enforce the DFT version of Koopmans' theorem, restores the predictive power of TDDFT even for such difficult cases, without any external reference data and without any adjustable parameters. We demonstrate the success of this approach on the oligoacene series and on related hydrocarbons. This resolves a long-standing question in TDDFT and extends the scope of molecules and systems to which TDDFT can be applied in a predictive manner.

Livshits, E. ; Granot, R. S. ; Baer, R. A Density Functional Theory for Studying Ionization Processes in Water Clusters. J. Phys. Chem. A 2011, 115, 5735–5744. Publisher's VersionAbstract

A generalized Kohn-Sham (GKS) approach to density functional theory (DFT), based on the Baer-Neuhauser-Livshits range-separated hybrid, combined with ab initio motivated range-parameter tuning is used to study properties of water dimer and pentamer cations. The water dimer is first used as a benchmark system to check the approach. The present brand of DFT localizes the positive charge (hole), stabilizing the proton transferred geometry in agreement with recent coupled-cluster calculations. Relative energies of various conformers of the water dimer cation compare well with previously published coupled cluster results. The GKS orbital energies are good approximations to the experimental ionization potentials of the system. Low-lying excitation energies calculated from time-dependent DFT based on the present method compare well with recently published high-level "equation of motion-coupled-cluster" calculations. The harmonic frequencies of the water dimer cation are in good agreement with experimental and wave function calculations where available. The method is applied to study the water pentamer cation. Three conformers are identified: two are Eigen type and one is a Zundel type. The structure and harmonic vibrational structure are analyzed. The ionization dynamics of a pentamer water cluster at 0 K shows a fast <50 fs transient for transferring a proton from one of the water molecules, releasing a hydroxyl radical and creating a protonated tetramer carrying the excess hole.