Multiexciton generation

Eshet, H. ; Baer, R. ; Neuhauser, D. ; Rabani, E. Theory of highly efficient multiexciton generation in type-II nanorods. Nat. Commun. 2016, 7.Abstract

Multiexciton generation, by which more than a single electron–hole pair is generated on optical excitation, is a promising paradigm for pushing the efficiency of solar cells beyond the Shockley–Queisser limit of 31%. Utilizing this paradigm, however, requires the onset energy of multiexciton generation to be close to twice the band gap energy and the efficiency to increase rapidly above this onset. This challenge remains unattainable even using confined nanocrystals, nanorods or nanowires. Here, we show how both goals can be achieved in a nanorod heterostructure with type-II band offsets. Using pseudopotential atomistic calculation on a model type-II semiconductor heterostructure we predict the optimal conditions for controlling multiexciton generation efficiencies at twice the band gap energy. For a finite band offset, this requires a sharp interface along with a reduction of the exciton cooling and may enable a route for breaking the Shockley–Queisser limit.

Zohar, G. ; Baer, R. ; Rabani, E. Multiexciton generation in IV–VI nanocrystals: the role of carrier effective mass, band mixing, and phonon emission. The journal of physical chemistry letters 2013, 4 317–322.Abstract

We study the role of the effective mass, band mixing, and phonon emission on multiexciton generation in IV–VI nanocrystals. A four-band k · p effective mass model, which allows for an independent variation of these parameters, is adopted to describe the electronic structure of the nanocrystals. Multiexciton generation efficiencies are calculated using a Green’s function formalism, providing results that are numerically similar to impact excitation. We find that multiexciton generation efficiencies are maximized when the effective mass of the electron and hole are small and similar. Contact with recent experimental results for multiexciton generation in PbS and PbSe is made.

Baer, R. ; Rabani, E. Communication: Biexciton generation rates in CdSe nanorods are length independent. J. Chem. Phys. 2013, 138, 051102–4.Abstract

We study how shape affects multiexciton generation rates in a semiconducting nanocrystal by considering CdSe nanorods with varying diameters and aspect ratios. The calculations employ an atomistic semiempirical pseudopotential model combined with an efficacious stochastic approach applied to systems containing up to 20 000 atoms. The effect of nanorod diameter and aspect ratio on multiexciton generation rates is analyzed in terms of the scaling of the density of trion states and the scaling of the Coulomb couplings. Both show distinct scaling from spherical nanocrystals leading to a surprising result where the multiexciton generation rates are roughly independent of the nanorod length.

Baer, R. ; Rabani, E. Expeditious stochastic calculation of multiexciton generation rates in semiconductor nanocrystals. Nano Lett. 2012, 12, 2123–2128.Abstract

A stochastic method is developed to calculate the multiexciton generation (MEG) rates in semiconductor nanocrystals (NCs). The numerical effort scales near-linearly with system size allowing the study of MEG rates up to diameters and exciton energies previously unattainable using atomistic calculations. Illustrations are given for CdSe NCs of sizes and energies relevant to current experimental setups, where direct methods require treatment of over 1011 states. The approach is not limited to the study of MEG and can be applied to calculate other correlated electronic processes.

Rabani, E. ; Baer, R. Theory of multiexciton generation in semiconductor nanocrystals. Chem. Phys. Lett. 2010, 496, 227–235.Abstract

We develop a generalized framework based on a Green’s function formalism to calculate the efficiency of multiexciton generation in nanocrystal quantum dots. The direct/indirect absorption and coherent/incoherent impact ionization mechanisms, often used to describe multiexciton generation in nanocrystals, are reviewed and rederived from the unified theory as certain approximations. In addition, two new limits are described systematically – the weak Coulomb coupling limit and the semi-wide band limit. We show that the description of multiexciton generation in nanocrystals can be described as incoherent process and we discuss the scaling of multiexciton generation with respect to the photon energy and nanocrystal size. Illustrations are given for three prototype systems: CdSe, InAs and silicon quantum dots.

Baer, R. ; Rabani, E. Can Impact Excitation Explain Efficient Carrier Multiplication in Carbon Nanotube Photodiodes?. Nano Lett. 2010, 10, 3277–3282.Abstract

We address recent experiments (Science 2009, 325, 1367) reporting on highly efficient multiplication of electron?hole pairs in carbon nanotube photodiodes at photon energies near the carrier multiplication threshold (twice the quasi-particle band gap). This result is surprising in light of recent experimental and theoretical work on multiexciton generation in other confined materials, such as semiconducting nanocrystals. We propose a detailed mechanism based on carrier dynamics and impact excitation resulting in highly efficient multiplication of electron?hole pairs. We discuss the important time and energy scales of the problem and provide analysis of the role of temperature and the length of the diode.

Rabani, E. ; Baer, R. Distribution of multiexciton generation rates in CdSe and InAs nanocrystals. Nano Lett. 2008, 8 4488–4492.Abstract

The distribution of rates of multiexciton generation following photon absorption is calculated for semiconductor nanocrystals (NCs). The rates of biexciton generation are calculated using Fermi’s golden rule with all relevant Coulomb matrix elements, taking into account proper selection rules within a screened semiempirical pseudopotential approach. In CdSe and InAs NCs, we find a broad distribution of biexciton generation rates depending strongly on the exciton energy and size of the NC. Multiexciton generation becomes inefficient for NCs exceeding 3 nm in diameter in the photon energy range of 2-3 times the band gap.