Citation:
arnon2020efficient.pdf | 1.4 MB |
Abstract:
Efficient Boltzmann-sampling using first-principles methods is challenging for extended systems due to the steep scaling of electronic structure methods with the system size. Stochastic approaches provide a gentler system-size dependency at the cost of introducing "noisy" forces, which serve to limit the efficiency of the sampling. In the first-order Langevin dynamics (FOLD), efficient sampling is achievable by combining a well-chosen preconditioning matrix S with a time-step-bias-mitigating propagator (Mazzola et al., Phys. Rev. Lett., 118, 015703 (2017)). However, when forces are noisy, S is set equal to the force-covariance matrix, a procedure which severely limits the efficiency and the stability of the sampling. Here, we develop a new, general, optimal, and stable sampling approach for FOLD under noisy forces. We apply it for silicon nanocrystals treated with stochastic density functional theory and show efficiency improvements by an order-of-magnitude.
Notes:
arXiv: 2001.12002