Gap renormalization of molecular crystals from density-functional theory


Refaely-Abramson, S. ; Sharifzadeh, S. ; Jain, M. ; Baer, R. ; Neaton, J. B. ; Kronik, L. Gap renormalization of molecular crystals from density-functional theory. Phys. Rev. B 2013, 88, 081204.
refaely2013gap.pdf1015 KB


Fundamental gap renormalization due to electronic polarization is a basic phenomenon in molecular crystals. Despite its ubiquity and importance, all conventional approaches within density-functional theory completely fail to capture it, even qualitatively. Here, we present a new screened range-separated hybrid functional, which, through judicious introduction of the scalar dielectric constant, quantitatively captures polarization-induced gap renormalization, as demonstrated on the prototypical organic molecular crystals of benzene, pentacene, and C60. This functional is predictive, as it contains system-specific adjustable parameters that are determined from first principles, rather than from empirical considerations.



Last updated on 01/09/2018