Photodissociation of H2+ upon Exposure to an Intense Pulsed Photonic Fock State

Citation:

Paul, A. K. ; Adhikari, S. ; Mukhopadhyay, D. ; Halasz, G. J. ; Vibok, A. ; Baer, R. ; Baer, M. Photodissociation of H2+ upon Exposure to an Intense Pulsed Photonic Fock State. J. Phys. Chem. A 2009, 113, 7331–7337.
paul2009.pdf298 KB

Abstract:

Producing and controlling nonclassical light states are now the subject of intense experimental efforts. In this paper we consider the interaction of such a light state with a small molecule. Specifically, we develop the theory and apply it numerically to calculate in detail how a short pulse of nonclassical light, such as the high intensity Fock state, induces photodissociation in H2+. We compare the kinetic energy distributions and photodissociation yields with the analogous results of quasi-classical light, namely a coherent state. We find that Fock-state light decreases the overall probability of dissociation for low vibrational states of H2+ as well as the location of peaks and line shapes in the kinetic energy distribution of the nuclei.

Notes:

RBaer-Publication

Last updated on 09/12/2018