# Publications by Author: Arnon, Eitam

Efficient Langevin dynamics for "noisy" forces. J. Chem. Phys. 2020, 152, 161103. Publisher's VersionAbstract arnon2020efficient.pdf

"Heaven" - is what I cannot reach!

The apple on the tree - provided it do hopeless hang

2020

Arnon, E. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Efficient Langevin dynamics for "noisy" forces. J. Chem. Phys. 2020, 152, 161103. Publisher's VersionAbstract

Efficient Boltzmann-sampling using first-principles methods is challenging for extended systems due to the steep scaling of electronic structure methods with the system size. Stochastic approaches provide a gentler system-size dependency at the cost of introducing "noisy" forces, which serve to limit the efficiency of the sampling. In the first-order Langevin dynamics (FOLD), efficient sampling is achievable by combining a well-chosen preconditioning matrix S with a time-step-bias-mitigating propagator (Mazzola et al., Phys. Rev. Lett., 118, 015703 (2017)). However, when forces are noisy, S is set equal to the force-covariance matrix, a procedure which severely limits the efficiency and the stability of the sampling. Here, we develop a new, general, optimal, and stable sampling approach for FOLD under noisy forces. We apply it for silicon nanocrystals treated with stochastic density functional theory and show efficiency improvements by an order-of-magnitude.

2017

Arnon, E. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Equilibrium configurations of large nanostructures using the embedded saturated-fragments stochastic density functional theory. J. Chem. Phys. 2017, 146, 224111.Abstract arnon2017equilibrium.pdf

An ab initio Langevin dynamics approach is developed based on stochastic density functional theory (sDFT) within a new embedded fragment formalism. The forces on the nuclei generated by sDFT contain a random component natural to Langevin dynamics and its standard deviation is used to estimate the friction term on each atom by satisfying the fluctuation–dissipation relation. The overall approach scales linearly with system size even if the density matrix is not local and is thus applicable to ordered as well as disordered extended systems. We implement the approach for a series of silicon nanocrystals (NCs) of varying size with a diameter of up to 3nm corresponding to Ne = 3000 electrons and generate a set of configurations that are distributed canonically at a fixed temperature, ranging from cryogenic to room temperature. We also analyze the structure properties of the NCs and discuss the reconstruction of the surface geometry.

Copyright © The Hebrew University of Jerusalem

Developed by Gizra