Baer, R. ; Neuhauser, D. Molecular electronic structure using auxiliary field Monte Carlo, plane-waves, and pseudopotentials.
J. Chem. Phys. 2000,
112, 1679–1684.
AbstractShifted contour auxiliary field Monte Carlo is implemented for molecular electronic structure using a plane-waves basis and norm conserving pseudopotentials. The merits of the method are studied by computing atomization energies of H2,H2, BeH2,BeH2, and Be2.Be2. By comparing with high correlation methods, DFT-based norm conserving pseudopotentials are evaluated for performance in fully correlated molecular computations. Pseudopotentials based on generalized gradient approximation lead to consistently better atomization energies than those based on the local density approximation, and we find there is room for designing pseudopotentials better suited for full valence correlation.
baer2000h.pdf Baer, R. Ab initio computation of forces and molecular spectroscopic constants using plane waves based auxiliary field Monte Carlo with application to N-2.
J. Chem. Phys. 2000,
113, 473–476.
AbstractCorrelated sampling within the shifted contour auxiliary field Monte Carlo method, implemented using plane waves and pseudopotentials, allows computation of electronic forces on nuclei, potential energy differences, geometric and vibrotational spectroscopic constants. This is exemplified on the N2 molecule, where it is demonstrated that it is possible to accurately compute forces, dissociation energies, bond length parameters, and harmonic frequencies.
baer2000d.pdf Baer, R. Ab-initio molecular deformation barriers using auxiliary-field quantum Monte Carlo with application to the inversion barrier of water.
Chem. Phys. Lett. 2000,
324, 101–107.
AbstractThe shifted-contour auxiliary field Monte Carlo method applied within a plane waves and pseudopotential framework is shown capable of computing accurate molecular deformation barriers. The inversion barrier of water is used as a test case. A method of correlated sampling is extremely useful for deriving highly accurate barriers. The inversion barrier height is determined to be 1.37 eV with a statistical error bar of "0.01 eV. Recent high-level ab initio results are within the error bars. Several theoretical and methodological issues are discussed.
baer2000e.pdf Baer, R. Accurate and efficient evolution of nonlinear Schrödinger equations.
Phys. Rev. A 2000,
62, 063810.
AbstractA numerical method is given for affecting nonlinear Schro¨dinger evolution on an initial wave function, applicable to a wide range of problems, such as time-dependent Hartree, Hartree-Fock, density-functional, and Gross-Pitaevskii theories. The method samples the evolving wave function at Chebyshev quadrature points of a given time interval. This achieves an optimal degree of representation. At these sampling points, an implicit equation, representing an integral Schro¨dinger equation, is given for the sampled wave function. Principles and application details are described, and several examples and demonstrations of the method and its numerical evaluation on the Gross-Pitaevskii equation for a Bose-Einstein condensate are shown.
baer2000accurate.pdf