Probabilistic algorithms

2019
Stochastic density functional theory
Fabian, M. D. ; Shpiro, B. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Stochastic density functional theory. Wiley Interdisciplinary Reviews: Computational Molecular Science 2019, 10.1002/wcms.1412, e1412. Publisher's VersionAbstract

Linear-scaling implementations of density functional theory (DFT) reach their intended efficiency regime only when applied to systems having a physical size larger than the range of their Kohn–Sham density matrix (DM). This causes a problem since many types of large systems of interest have a rather broad DM range and are therefore not amenable to analysis using DFT methods. For this reason, the recently proposed stochastic DFT (sDFT), avoiding exhaustive DM evaluations, is emerging as an attractive alternative linear-scaling approach. This review develops a general formulation of sDFT in terms of a (non)orthogonal basis representation and offers an analysis of the statistical errors (SEs) involved in the calculation. Using a new Gaussian-type basis-set implementation of sDFT, applied to water clusters and silicon nanocrystals, it demonstrates and explains how the standard deviation and the bias depend on the sampling rate and the system size in various types of calculations. We also develop a basis-set embedded-fragments theory, demonstrating its utility for reducing the SEs for energy, density of states and nuclear force calculations. Finally, we discuss the algorithmic complexity of sDFT, showing it has CPU wall-time linear-scaling. The method parallelizes well over distributed processors with good scalability and therefore may find use in the upcoming exascale computing architectures. This article is categorized under: Electronic Structure Theory \textgreater Ab Initio Electronic Structure Methods Structure and Mechanism \textgreater Computational Materials Science Electronic Structure Theory \textgreater Density Functional Theory

fabian2019stochastic.pdf
Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials
Chen, M. ; Baer, R. ; Neuhauser, D. ; Rabani, E. Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials. J. Chem. Phys. 2019, 150, 034106. Publisher's VersionAbstract

The stochastic density functional theory (DFT) [R. Baer et al., Phys. Rev. Lett. 111, 106402 (2013)] is a valuable linear-scaling approach to Kohn-Sham DFT that does not rely on the sparsity of the density matrix. Linear (and often sub-linear) scaling is achieved by introducing a controlled statistical error in the density, energy, and forces. The statistical error (noise) is proportional to the inverse square root of the number of stochastic orbitals and thus decreases slowly; however, by dividing the system into fragments that are embedded stochastically, the statistical error can be reduced significantly. This has been shown to provide remarkable results for non-covalently-bonded systems; however, the application to covalently bonded systems had limited success, particularly for delocalized electrons. Here, we show that the statistical error in the density correlates with both the density and the density matrix of the system and propose a new fragmentation scheme that elegantly interpolates between overlapped fragments. We assess the performance of the approach for bulk silicon of varying supercell sizes (up to Ne = 16 384 electrons) and show that overlapped fragments reduce significantly the statistical noise even for systems with a delocalized density matrix.

chen2018overlapped.pdf
2018
Simple eigenvalue-self-consistent ΔGW0
Vlček, V. ; Baer, R. ; Rabani, E. ; Neuhauser, D. Simple eigenvalue-self-consistent ΔGW0. J. Chem. Phys. 2018, 149, 174107. Publisher's Version vlcek2018simple.pdf
Vlček, V. ; Li, W. ; Baer, R. ; Rabani, E. ; Neuhauser, D. Swift G W beyond 10,000 electrons using sparse stochastic compression. Phys. Rev. B 2018, 98, 075107. Publisher's Version vlcek_et_al._-_2018_-_swift_g_w_beyond_10000_electrons_using_sparse_sto.pdf
First-principles spectra of Au nanoparticles: from quantum to classical absorption
Hernandez, S. ; Xia, Y. ; Vlček, V. ; Boutelle, R. ; Baer, R. ; Rabani, E. ; Neuhauser, D. First-principles spectra of Au nanoparticles: from quantum to classical absorption. Molecular Physics 2018, 116, 2506–2511. Publisher's VersionAbstract

Absorption cross-section spectra for gold nanoparticles were calculated using fully quantum Stochastic Density Functional Theory and a classical Finite-Difference Time Domain Maxwell solver. Spectral shifts were monitored as a function of size (1.3–) and shape (octahedron, cubeoctahedron and truncated cube). Even though the classical approach is forced to fit the quantum time-dependent density functional theory at , at smaller sizes there is a significant deviation as the classical theory is unable to account for peak splitting and spectral blueshifts even after quantum spectral corrections. We attribute the failure of classical methods at predicting these features to quantum effects and low density of states in small nanoparticles. Classically, plasmon resonances are modelled as collective conduction electron excitations, but at small nanoparticle size these excitations transition to few or even individual conductive electron excitations, as indicated by our results.

hernandez2018first.pdf
Unravelling open-system quantum dynamics of non-interacting Fermions
Ruan, Z. ; Baer, R. Unravelling open-system quantum dynamics of non-interacting Fermions. Mol. Phys. 2018, 116, 2490-2496. Publisher's VersionAbstract

ABSTRACTThe Lindblad equation is commonly used for studying quantum dynamics in open systems that cannot be completely isolated from an environment, relevant to a broad variety of research fields, such as atomic physics, materials science, quantum biology and quantum information and computing. For electrons in condensed matter systems, the Lindblad dynamics is intractable even if their mutual Coulomb repulsion could somehow be switched off. This is because they would still be able to affect each other by interacting with the bath. Here, we develop an approximate approach, based on the HubbardStratonovich transformation, which allows to evolve non-interacting Fermions in open quantum systems. We discuss several applications for systems of trapped 1D Fermions showing promising results.

ruan2018unravelling.pdf
Stochastic Density Functional Theory at Finite Temperatures
Cytter, Y. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Stochastic Density Functional Theory at Finite Temperatures. Phys. Rev. B 2018, 97, 115207. Publisher's VersionAbstract

Simulations in the warm dense matter regime using finite temperature Kohn-Sham density functional theory (FT-KS-DFT), while frequently used, are extremely expensive computationally due to the partial occupation of a very large number of high-energy KS eigenstates which are obtained from subspace diagonalization. We have developed a stochastic method for applying FT-KS-DFT, that overcomes the bottleneck of calculating the occupied KS orbitals by directly obtaining the density from KS Hamiltonian. The proposed algorithm, scales as $O\left(NT^{-1}\right)$ and is compared with the high-temperature limit scaling $O\left(N^{3}T^{3}\right)$ of the deterministic approach, where $N$ is the system size (number of electrons, volume etc.) and $T$ is the temperature. The method has been implemented in a plane-waves code within the local density approximation (LDA); we demonstrate its efficiency, statistical errors and bias in the estimation of the free energy per electron for a diamond structure silicon. The bias is small compared to the fluctuations, and is independent of system size. In addition to calculating the free energy itself, one can also use the method to calculate its derivatives and obtain the equations of state.

cytter2018.pdf
2017
Takeshita, T. Y. ; de Jong, W. A. ; Neuhauser, D. ; Baer, R. ; Rabani, E. Stochastic Formulation of the Resolution of Identity: Application to Second Order Møller–Plesset Perturbation Theory. J. Chem. Theory Comput. 2017, 13, 4605. Publisher's VersionAbstract

A stochastic orbital approach to the resolution of identity (RI) approximation for 4 index electron repulsion integrals (ERIs) is presented. The stochastic RI-ERIs are then applied to second order Møller-Plesset perturbation theory (MP2) utilizing a multiple stochastic orbital approach. The introduction of multiple stochastic orbitals results in an O(N_AO^3 ) scaling for both the stochastic RI-ERIs and stochastic RI-MP2, NAO being the number of basis functions. For a range of water clusters we demonstrate that this method exhibits a small prefactor and observed scalings of O(Ne^2.4) for total energies and O(Ne^3.1) for forces (Ne being the number of correlated electrons), outperforming MP2 for clusters with as few as 21 water molecules.

takeshita2017stochastic.pdf
Buchman, O. ; Baer, R. Stochastic method for calculating the ground-state one-body density matrix of trapped Bose particles in one dimension. Phys. Rev. A 2017, 96, 033626. buchman2017.pdf
Arnon, E. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Equilibrium configurations of large nanostructures using the embedded saturated-fragments stochastic density functional theory. J. Chem. Phys. 2017, 146, 224111.Abstract

An ab initio Langevin dynamics approach is developed based on stochastic density functional theory (sDFT) within a new embedded fragment formalism. The forces on the nuclei generated by sDFT contain a random component natural to Langevin dynamics and its standard deviation is used to estimate the friction term on each atom by satisfying the fluctuation–dissipation relation. The overall approach scales linearly with system size even if the density matrix is not local and is thus applicable to ordered as well as disordered extended systems. We implement the approach for a series of silicon nanocrystals (NCs) of varying size with a diameter of up to 3nm corresponding to Ne = 3000 electrons and generate a set of configurations that are distributed canonically at a fixed temperature, ranging from cryogenic to room temperature. We also analyze the structure properties of the NCs and discuss the reconstruction of the surface geometry.

arnon2017equilibrium.pdf
2016
Vlček, V. ; Eisenberg, H. R. ; Steinle-Neumann, G. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Spontaneous charge carrier localization in extended one-dimensional systems. Phys. Rev. Lett. 2016, 116, 186401.Abstract

Charge carrier localization in extended atomic systems has been described previously as being driven by disorder, point defects, or distortions of the ionic lattice. Here we show for the first time by means of first-principles computations that charge carriers can spontaneously localize due to a purely electronic effect in otherwise perfectly ordered structures. Optimally tuned range-separated density functional theory and many-body perturbation calculations within the GW approximation reveal that in trans-polyacetylene and polythiophene the hole density localizes on a length scale of several nanometers. This is due to exchange-induced translational symmetry breaking of the charge density. Ionization potentials, optical absorption peaks, excitonic binding energies, and the optimally tuned range parameter itself all become independent of polymer length as it exceeds the critical localization length. Moreover, we find that lattice disorder and the formation of a polaron result from the charge localization in contrast to the traditional view that lattice distortions precede charge localization. Our results can explain experimental findings that polarons in conjugated polymers form instantaneously after exposure to ultrafast light pulses.

vlcek2016.pdf
2015
Neuhauser, D. ; Rabani, E. ; Cytter, Y. ; Baer, R. Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory. J. Phys. Chem. A 2015, 120, 3071–3078.Abstract

We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn–Sham density matrix. The computational cost of the approach is similar to that of usual Kohn–Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe–Salpeter approach.

neuhauser2015.pdf
Rabani, E. ; Baer, R. ; Neuhauser, D. Time-dependent stochastic Bethe-Salpeter approach. Phys. Rev. B 2015, 91, 235302.Abstract

A time-dependent formulation for electron-hole excitations in extended finite systems, based on the Bethe-Salpeter equation (BSE), is developed using a stochastic wave function approach. The time-dependent formulation builds on the connection between time-dependent Hartree-Fock (TDHF) theory and the configuration-interaction with single substitution (CIS) method. This results in a time-dependent Schrödinger-like equation for the quasiparticle orbital dynamics based on an effective Hamiltonian containing direct Hartree and screened exchange terms, where screening is described within the random-phase approximation (RPA). To solve for the optical-absorption spectrum, we develop a stochastic formulation in which the quasiparticle orbitals are replaced by stochastic orbitals to evaluate the direct and exchange terms in the Hamiltonian as well as the RPA screening. This leads to an overall quadratic scaling, a significant improvement over the equivalent symplectic eigenvalue representation of the BSE. Application of the time-dependent stochastic BSE (TDsBSE) approach to silicon and CdSe nanocrystals up to size of  3000 electrons is presented and discussed.

rabani2015.pdf
Jacobi, S. ; Baer, R. Smoothing and extrapolating shifted-contour auxiliary-field Monte Carlo signals using discrete Laguerre functions. arXiv preprint arXiv:1504.05452 2015.Abstract

We develop a new smoothing or extrapolating method, based on discrete Laguerre functions, for systematically analyzing the stochastic signal of shifted-contour auxiliary-field Monte Carlo. We study the statistical errors and extrapolation errors using full configuration-interaction energies for the doubly stretched water molecule. The only free parameter is the order N of the fit. We show that low N emphasizes stability while higher N enable improved extrapolation, at the cost of increased statistical errors. Typically, one should use low order for signals based on a small number of iterations while higher order is efficacious for signals based on large number of iterations. We provide a heuristic algorithm for determining the order to be used and show its utility.

Gao, Y. ; Neuhauser, D. ; Baer, R. ; Rabani, E. Sublinear scaling for time-dependent stochastic density functional theory. J. Chem. Phys. 2015, 142, 034106.Abstract

A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number ( 16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.

gao2015.pdf
2014
Neuhauser, D. ; Gao, Y. ; Arntsen, C. ; Karshenas, C. ; Rabani, E. ; Baer, R. Breaking the Theoretical Scaling Limit for Predicting Quasiparticle Energies: The Stochastic GW Approach. Phys. Rev. Lett. 2014, 113, 076402.Abstract

We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with Ne > 3000 electrons.

neuhauser2014.pdf
Neuhauser, D. ; Baer, R. ; Rabani, E. Communication: Embedded fragment stochastic density functional theory. J. Chem. Phys. 2014, 141, 041102.Abstract

We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.

neuhauser2014a.pdf
Cytter, Y. ; Neuhauser, D. ; Baer, R. Metropolis Evaluation of the Hartree–Fock Exchange Energy. J. Chem. Theory Comput. 2014, 10, 4317–4323.Abstract

We examine the possibility of using a Metropolis algorithm for computing the exchange energy in a large molecular system. Following ideas set forth in a recent publication (Baer, Neuhauser, and Rabani, Phys. Rev. Lett. 111, 106402 (2013)) we focus on obtaining the exchange energy per particle (ExPE, as opposed to the total exchange energy) to a predefined statistical error and on determining the numerical scaling of the calculation achieving this. For this we assume that the occupied molecular orbitals (MOs) are known and given in terms of a standard Gaussian atomic basis set. The Metropolis random walk produces a sequence of pairs of three-dimensional points (x,x'), which are distributed in proportion to $\rho(x,x')^2$, where $\rho(x,x')$ is the density matrix. The exchange energy per particle is then simply the average of the Coulomb repulsion energy U_C(|x–x'|) over these pairs. To reduce the statistical error we separate the exchange energy into a short-range term that can be calculated deterministically in a linear scaling fashion and a long-range term that is treated by the Metropolis method. We demonstrate the method on water clusters and silicon nanocrystals showing the magnitude of the ExPE standard deviation is independent of system size. In the water clusters a longer random walk was necessary to obtain full ergodicity as Metropolis walkers tended to get stuck for a while in localized regions. We developed a diagnostic tool that can alert a user when such a situation occurs. The calculation effort scales linearly with system size if one uses an atom screening procedure that can be made numerically exact. In systems where the MOs can be localized efficiently the ExPE can even be computed with “sublinear scaling” as the MOs themselves can be screened.

cytter2014.pdf
2013
Neuhauser, D. ; Rabani, E. ; Baer, R. Expeditious Stochastic Approach for MP2 Energies in Large Electronic Systems. J. Chem. Theory Comput. 2013, 9 24–27.Abstract

A fast stochastic method for calculating the second order Møller-Plesset (MP2) correction to the correlation energy of large systems of electrons is presented. The approach is based on reducing the exact summation over occupied and unoccupied states to a time-dependent trace formula amenable to stochastic sampling. We demonstrate the abilities of the method to treat systems with thousands of electrons using hydrogen passivated silicon spherical nanocrystals represented on a real space grid, much beyond the capabilities of present day MP2 implementations.

neuhauser2013.pdf
Neuhauser, D. ; Rabani, E. ; Baer, R. Expeditious Stochastic Calculation of Random-Phase Approximation Energies for Thousands of Electrons in Three Dimensions. J. Phys. Chem. Lett. 2013, 4 1172–1176.Abstract

A fast method is developed for calculating the random phase approximation (RPA) correlation energy for density functional theory. The correlation energy is given by a trace over a projected RPA response matrix, and the trace is taken by a stochastic approach using random perturbation vectors. For a fixed statistical error in the total energy per electron, the method scales, at most, quadratically with the system size; however, in practice, due to self-averaging, it requires less statistical sampling as the system grows, and the performance is close to linear scaling. We demonstrate the method by calculating the RPA correlation energy for cadmium selenide and silicon nanocrystals with over 1500 electrons. We find that the RPA correlation energies per electron are largely independent of the nanocrystal size. In addition, we show that a correlated sampling technique enables calculation of the energy difference between two slightly distorted configurations with scaling and a statistical error similar to that of the total energy per electron.

neuhauser2013a.pdf

Pages