Zhang, X. ; Lu, G. ; Baer, R. ; Rabani, E. ; Neuhauser, D. Linear-Response Time-Dependent Density Functional Theory with Stochastic Range-Separated Hybrids.
Journal of Chemical Theory and Computation 2020,
16, 1064–1072.
Publisher's VersionAbstractGeneralized Kohn−Sham density functional theory is a popular computational tool for the ground state of extended systems, particularly within range-separated hybrid (RSH) functionals that capture the long-range electronic interaction. Unfortunately, the heavy computational cost of the nonlocal exchange operator in RSH-DFT usually confines the approach to systems with at most a few hundred electrons. A significant reduction in the computational cost is achieved by representing the density matrix with stochastic orbitals and a stochastic decomposition of the Coulomb convolution (J. Phys. Chem. A 2016, 120, 3071). Here, we extend the stochastic RSH approach to excited states within the framework of linear-response generalized Kohn−Sham time-dependent density functional theory (GKS-TDDFT) based on the plane-wave basis. As a validation of the stochastic GKS-TDDFT method, the excitation energies of small molecules N2 and CO are calculated and compared to the deterministic results. The computational efficiency of the stochastic method is demonstrated with a two-dimensional MoS2 sheet (∼1500 electrons), whose excitation energy, exciton charge density, and (excited state) geometric relaxation are determined in the absence and presence of a point defect.
zhang2020linear.pdf Dou, W. ; Chen, M. ; Takeshita, T. Y. ; Baer, R. ; Neuhauser, D. ; Rabani, E. Range-separated stochastic resolution of identity: Formulation and application to second-order Green’s function theory.
The Journal of Chemical Physics 2020,
153, 074113.
Publisher's VersionAbstractWe develop a range-separated stochastic resolution of identity (RS-SRI) approach for the four-index electron repulsion integrals, where the larger terms (above a predefined threshold) are treated using a deterministic RI and the remaining terms are treated using a SRI. The approach is implemented within a second-order Green’s function formalism with an improved O(N3) scaling with the size of the basis set, N. Moreover, the RS approach greatly reduces the statistical error compared to the full stochastic version [T. Y. Takeshita et al., J. Chem. Phys. 151, 044114 (2019)], resulting in computational speedups of ground and excited state energies of nearly two orders of magnitude, as demonstrated for hydrogen dimer chains and water clusters.
dou2020range.pdf Arnon, E. ; Rabani, E. ; Neuhauser, D. ; Baer, R. Efficient Langevin dynamics for "noisy" forces.
J. Chem. Phys. 2020,
152, 161103.
Publisher's VersionAbstractEfficient Boltzmann-sampling using first-principles methods is challenging for extended systems due to the steep scaling of electronic structure methods with the system size. Stochastic approaches provide a gentler system-size dependency at the cost of introducing "noisy" forces, which serve to limit the efficiency of the sampling. In the first-order Langevin dynamics (FOLD), efficient sampling is achievable by combining a well-chosen preconditioning matrix S with a time-step-bias-mitigating propagator (Mazzola et al., Phys. Rev. Lett., 118, 015703 (2017)). However, when forces are noisy, S is set equal to the force-covariance matrix, a procedure which severely limits the efficiency and the stability of the sampling. Here, we develop a new, general, optimal, and stable sampling approach for FOLD under noisy forces. We apply it for silicon nanocrystals treated with stochastic density functional theory and show efficiency improvements by an order-of-magnitude.
arnon2020efficient.pdf